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Summary. The energy expression for many-electron systems is rewritten by ap- 
plying a Gaussian transformation to the two-body matrix elements of the Coulomb 
interaction. The resulting field theory is treated as a classical dynamical system 
leading to a set of equations of motion. This treatment of the quantum many- 
particle problem allows for a common formulation of ab initio Molecular Dy- 
namics simulations and the microcanonical approach to lattice field theories. 
Solution of the Hartree-Fock equations or optimization of the single particle basis 
used in a configuration interaction expansion can be obtained by the method 
within an ab initio Molecular Dynamics framework. 
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1 Introduction 

The method of simulated annealing has proven to be a powerful tool for minimi- 
zation problems [1]. For atomic and molecular systems, the method of dynamical 
simulated annealing was introduced E2]: a classical dynamics for the nuclear 
coordinates and any external parameters is introduced as well as for the electronic 
degrees of freedom. In this approach, the electronic wave functions are treated as 
dynamical variables satisfying a fictive equation of motion. Minimization of the 
total energy is then achieved by rescaling of the "velocities" until the system is 
trapped into a local minimum of the energy surface; hence the name dynamical 
simulated annealing. The dynamical simulated annealing of Car and Parrinello [2] 
is presented in context of the density functional expression for the total energy [-3]. 
A similar strategy is given here for the solution of the Hartree-Fock equations or 
for optimization of one electron functions used in a configuration interaction (CI) 
in a way similar to multiconfiguration self consistent field (MCSCF) methods. No 
matrix diagonalizations are required for the solution of the mean field equations or 
for the determination of the optimal basis functions. 

To make contact with a method common to problems in field theory [4, 5], 
the energy expectation value is rewitten with the aid of a Gaussian transformation 
that is similar in approach to the Hubbard-Stratonovich transformation [6, 7]. 
However, the Hubbard-Stratonovich transformation is an operator identity. 
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By applying a Gaussian transformation directly to the two-body expectation 
values of the Coulomb problem, a classical field theory is achieved and is directly 
accessible to a classical dynamics interpretation. 

2 The Hubbard-Stratonovich transformation 

By writing two-body interactions in an explicitly quadratic form, the Hub- 
bard-Stratonovich (H-S) transformation makes use of Gaussian integrals to re- 
write the two-body terms as functional integrals over a one-body potential. The 
transformation is an operator identity and relies on the second quantization 
formulism. In many-fermion problems, second quantization is the operator version 
of expressing a state as an infinite sum over Slater determinants built up from 
a complete single particle basis. As such, the second quantization formulation of 
the problem is equivalent to the configuration interaction (CI) expansion with 
which creation and destruction operators are not necessarily introduced. The 
operator formulation of the H-S transformation is reviewed in this section. A sim- 
ilar transformation is applied in the following section directly to symmetric two- 
body matrix elements without relying on the second quantization method. 

The H-S transformation can be applied to a Hamiltonian consisting of 
one-body and two-body interactions: 

/t(1, 2, ... , n ) = ~  hi+½ Y, fu;u 
i i jkl  

__/~u) +/~(2), (i) 

where 

g i j ; k l  A t "  At  ^ -~ l ) i j ; k l a  i a j a k  a 1. (2) 

The H-S transformation is usually applied to the partition function 

Z = Tr exp [ -  fl/}(i) _ f l / ~ ( 2 )  ], (3) 

with fi = 1/kT the inverse temperature. Due to the noncommutativity of/}(1) and 
/~(2) the partition function is rewritten 

Z = Tr exp [ - -  ~ s(/~°) +/]~2))] 

~Yr lim [ I  exp[ - s/}u)] exp[ - s/~(2)'], (4) 
in--+ co 

with s= fi/m the Trotter time. As m--+ 0% Eq. (4) becomes accurate to order (9(s2). 
The H-S transformation relies on a symmetric interaction 

Vi j ;k l  = l)kl; i j" ( 5 )  

The two-body interactions are then quadratic and may be written with aid of the 
Gaussian integral 

exp(kx2)= f d ~  exp(-½q52 + xq~) (6) 
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a s  

^ t  ^ ,,* ,, • U2 ^ t  * exp -½s~.  Vij;k,a iajakat ~ Hd~bijexp - s s  q52+lS£ gpijvo;ija iaj 
i j  j i j  

(7) 

after transforming Vij;k t to diagonal form. Equation (7) is the essence of the H-S 
transformation: the two-body terms on the left hand side are expressed as Gaussian 
integrals over a single-body interaction. Substitution of Eq. (7) into the complete 
expression for ~the partition function Eq. (4) completes the transformation. Expan- 
sion of the exponential of the term linear in ¢ and applying Wick's theorem to the 
time development operator Z [fl = it] = U(t, 0) allows for a diagrammatic expan- 
sion of the complete many-body problem. Expanding about different stationary 
points allows for a straightforward determination of various forms of the Many- 
Body Perturbation Theory (MBPT) expansion I-7, 8]. 

3 A Gaussian transformation for the matrix elements of symmetric 
two-body interactions 

A similar derivation will now be given for the two-body terms of a CI expansion. 
This functional mimic of the H-S transformation is given for fermion systems 
in three spatial dimensions and a real, symmetric potential: in particular, the 
Coulomb interaction. However, the discussion is sufficiently flexible to be applic- 
able to other potentials as well as boson systems. 

The n-particle Hamiltonian takes the form: 

with 

/~(1,2,.-. ,n)= ~, h(xi)+½ ~ V(xi, xj) 
i = l  i , j = l  

i # j  

(8) 

h(x) = -½ V~ + V(x), (9) 

the sum of the kinetic energy and any one-body potentials. The basic quantity to be 
considered will be the expectation value of the Hamiltonian operator 

E = (T(1, 2, ..., n) l/~1 T(1, 2,---, n)) (10) 

(throughout the following, volume elements are implied to contain spin products). 
Any state of many-body system may be represented as a CI expansion: 

I T(1, 2, ..., n)) = ~ CA IT a>, (11) 
A 

where T A is a single configuration state function (CSF). The CSFs are the spin 
coupled sums of Slater determinants built-up from a complete set of single particle 
functions ffi and i labels a set of quantum numbers for a single particle state. The 
single particle functions are assumed to be orthogonal and normalized: 

(~,,10j} = a,j. (12) 
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For the Hamiltonian Eq. (8), the expectation values may be written in terms of the 
first and second order density matrices. In particular for the two-body terms, the 
expectation value becomes 

(~PI/~(2) I ~ )  =fd3xl dax2 V(xl, xe)F(xl, X2[X1, X2) , (13) 

with 

F(x'~,x'2[xl,x2)=(~)fdaxa'"daxn~P*(x',,x'2,"',x,)~(xl,x2,'",x,). 

(14) 

It is convenient to consider a truncated CI expansion whereby the single particle 
basis is restricted to M expansion functions: this allows the problem to be formu- 
lted in terms of finite matrices. The final result may be made arbitrarily accurate by 
allowing M to become as large as required. With help of the CI expansion, the 
second order density matrix is rewritten 

X ~J*4(Xtl,Xt2,'",Xn)}IIB(X1,X2,"',Xn). (15) 

The two-body terms can be written 

7 j )  = ~d3xl dax2 p(x~, xl)FV(x~, x2)p(x2, x2) (16) ( el/T2) I 
d 

with 

and 

p(x, y)=(p11(x, y), 

P21( x, Y), 

PM 1 (x, y), 

p,2(x, y),..., p,M(x, y), 

pz2(X, y),'", pzM(X, y),'", 

p~2(x, y),-.., p~ (x ,  y)). (17) 

p,j(x, y)= ¢*(x)~bj(y). (18) 

F is the M 2 × M 2 symmetrized matrix of the coefficients of each of the terms 
pij(x, X)pkz(y, y)arising from Eq. (15). The matrix F may be transformed to diagonal 
form 

t - -  + F ~ -  ~ U,aFa~ U~ (19) 

resulting in the new vectors 

p'~(x, x ) = ~  p~(x, x) U, a. (20) 

A Greek subscript is being used to denote a two-particle state ~=(ij). Whereas 
natural orbitals [9] are the product orbitals that diagonalize the first order density 
matrix, the transformation Eq. (19) relies on the product-orbitals which diagonalize 
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the second order density matrix. In diagonal form, the two-body expectation value 
becomes 

(~l_FI(2)]~>=~ r'~ f d3x, d3x2p'(x,,x,)V(Xl,X2)p'=(Xe,X2). (21) 

The square root of the interaction may be defined as follows: 

(x, y) = f d3x ' Y" 1/2(x, x')"t/1/2(x', y). (22) V 

Equations (19) and (22) allow the interaction matrix elements to be written 
explicitly quadratic 

(~l~I'2),~)=~F',fd3xQfd3yy'*/2(x,y)p'~(y,y)) 2" (23, 

A discrete approximation to the outer integration results in 

(1[/1/~(2)] ~ )  = E F ;  = E (l")~/2(Xj))2' (24) 
j 

where the function 
(" 

vl/2(Xj) = Jd3y 1/2(xj, y) (25) 

has been implicitly averaged over cells of volume 63x. The cells are then replaced 
with a lattice of points Z 3 and to each lattice point there is assigned a value v~/2(xi). 

The energy expectation value may be exponentiated and written simply as 

e a~ = e ~<elo''l ~>e p<~l'q~'l ~>, (26) 

since the expectation values are scalars and therefore commute. Again using Eq. (6), 
a Gaussian variable is introduced at each lattice point 

d a:,j L ~ "" A 

xexp[-~fiF'=fd3x4)2(x)+2~flF'~fd3x4)=,x,v~/2(x,]. (27, 

Equation (27) is the form corresponding to Eq. (7). Whereas Eq. (7) applies to the 
n-particle Hamiltonian written in second quantized form, Eq. (27) is valid for 
two-body matrix elements (scalar) terms. While formally similar, the two trans- 
formations have notable differences. Firstly, there is no Trotter time (the parameter 
s in Eq. (4)) in the functional version of the transformation. Secondly, Fermi 
statistics in the operator version are preserved through the operators a ~ aj whereas 
the result of Fermi statistics is contained within the density coefficients F=~ for the 
functional form. 

A functional change of variables may be introduced as follows: 

f d3x y) qo=(x) = 0"(Y). (28) y- 1/2(X , 
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The two-body terms becomes 

, d  I-- a t /  

+ 2 f l ~ r ' ~  (29) 

where J is the Jacobian for the change of variable Eq. (28) (in this case, the 
Fredholm determinant det(V- 1/2)). The operator 9-1  is defined by 

V-  1 V(x, y )=63(x-  y) (30) 

given explicitly for the Coulomb interaction as 

1 
9 - I -  V~. (31) 

4re 

The second order density matrix may be returned to non-diagonal form 

As for the H-S transformation [7], the stationary point of the functional integral is 
given by the Hartree mean field which is the Coulomb potential due to a classical 
charge distribution: 

= fd3y  V (x, y)p~(y, y). (33) ~°(x) 

Using the functional form of the transformation, the total energy can be put in 
the form 

with 

(34) 

i j  ~. kl  

- Y. ¢ , j (x)r ,s~, f -10~,(x) .  (35t 
i jk l  

When the stationary condition is fulfilled, the total energy is 

i j  i jk l  

with 

J/gij [q 5° ] = 7ij[--½ V z + V(x)] + 2 ~ Fijk,(gkO(X). (37) 
kI 
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The first term is the sum of the one-particle energies and the second term 
corrects the over-counting of the two-body potentials occurring in first sum. If 
there are M = n expansion functions only one Slater determinant can be construc- 
ted. In this case, only the n lowest states are occupied and 7ij = 6ij for i, j ~< n and is 
zero otherwise. Requiring the field q~ to satisfy the stationary condition results in 
the standard expression for the energy of the Hamiltonian Eq. (8) in a single Slater 
determinant: 

e -  d3x4,~(x)[-~ V2+V(x)]Oi(x) 
i=1 

+½ ~ fdaxd3y#1*(x)tp*(y)V(x,y)[qQ(xlOj(y)-qQ(y)Oj(x)]. (381 
i,j=l 

Clearly, variation of the energy E[~*, ~] with the constraint of orthogonality of 
the single particle functions results in the Hartree-Fock equations. 

If the energy in Eq. (34) is varied with respect to ~* and ~, the following two 
equations arise: 

~ (Tij[--½172 + V ] -k- 2 ~kl l~ijkt~kt } ~tj-= ~j . (39) 

and 

[ r 1172+ t O * -  ~j ~])jiL--2 V ] + 2 ~ l'jikl~)kl_ i -- ~eiy~*, (40) 

where the Lagrangian multipliers eli have been introduced to enforce orthogonality 
of the single particle functions. If the complex conjugate of Eq. (40) is substracted 
from Eq. (39), the following condition on the Lagrangian multipliers arises: 

Z gJj(eij-ej*)=O, (41) 
J 

where it has been assumed that q~*z--~b~k which holds for the stationary condition. 
Since the Oj are linearly independent, the Lagrangian multipliers form a Hermitian 
matrix which can be diagonalized and identified with the single particle energies. In 
particular, if the conditions on the single particle densities are those appropriate for 
the single Slater determinant case and the fields satisfy the stationary condition, 
Eq. (39) with e diagonal is the set of Hartree-Fock equations: 

[_½V2+V]t)i+2Y ", o FUk I (gkl ~] = 8 i ~1 i . (42) 
jkl 

4 Minimization dynamics 

Often, when given a functional integral of the form 

= f ~q~ exp [ -  SB [q5 ] ], (43) Z 

it is desired to generate a large number of field configurations to stochastically 
sample the bosonic action SR [q~ ]. Callaway and Rahman [4-] made the observation 
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that by defining a Hamiltonian 
pa 

H=~m+SR[q~ ], (44) 

with p independent of q~ does not change the calculation of expectation values 

(F  [q~] ) = .I @~b F [~b] exp [ - SB [4)] ], (45) 

where F [0] is a functional of the fields qS. They define a modified functional 
integral 

t *  

j ~ b  ~p  e x p [ - H [ p ,  q~] ] (46) Z 

and use classical dynamics to generate field configurations 4~. This microcanonical 
formulation was then extended to systems containing fermions by Polonyi and 
Wyld [51. The Gaussian transformation derived in Section 3 is of the form 
explicitly considered by Polonyi and Wyld so that a short digression to discuss 
their method follows. 

In their treatment, the action 

1 
S[~b, #/*, ~] =~ .~ ~*~ii[qS] ~i + S,[~b] (47) 

z,J  

is modelled by use of a Hamiltonian system with conjugate variables {Pi, Qi} and 
{Pi, qi} 

H=½ P~Jg ~ I [ q]Pj+ coE Q~ + ½p~ + S~[ q] (48) 

(note the use of dg 1 in defining the Hamiltonian). The Euler-Lagrange equations 
are given by 

d 
~ [ q l O . = - c o 2 Q ,  

~t = --6SB[q]/bq + ~qQ d/t [q] Q. (49) 

Integration of the equations of motion results in phase space points on a constant 
energy surface and with the usual assumption of ergodicity a microcanical en- 
semble of states will be generated. In this way, the ficticious dynamics introduced in 
Eq. (49) are being used to generate field configurations for determining statistical 
weights needed for calculating expectation values with the functional integral 
Eq. (45). 

The energy density Eq. (35) is seen to be in the form of Eq. (47) through the 
following identifications: 

~ ~ i j [ 4 , ]  = ?~j[-½ v 2 + V(x)] + 2  Y, rijk,4)k~(x)- ~ j [ 4 , ] ,  
kl 

s~ [ ¢ ]  = - Y, Cdx)r,j~, 9 1 ¢ok,(x). (50) 
i jkl  

The goal is to minimize the total energy with two constraints: 

1. orthogonality of the single particle expansion functions Eq. (12). 
2. the fields ~bi~ should satisfy the stationary condition Eq. (33). 
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Now the purpose of the fictive dynamics is not to generate many sets of field 
configurations q~, ~*, ~k to sample many values of the action, rather any dynamics 
defined should attempt to find the global minimum of the energy functional, 
E[~b, O*, #/]. To this purpose, the following Lagrangian density is defined: 

(51) 0 j  

Note that whereas Polonyi and Wyld chose to introduce a harmonic potential for 
the Pi momenta, Eq. (51) introduces no corresponding potential. Without loss of 
generality, in the following ~* and ~ will not be treated as independent variables. 
The Lagrangian for the system then gives rise to the following equations of motion: 

4; = - a/a  (52)  

The equation of motion for ~b allows for updating of the fields and insures that 
when the "forces" $ are zero, the stationary condition is fulfilled. However, in Eq. 
(52) there is no means of assuring the orthogonality of the single particle wave 
functions. Normally when restricting the dynamics of a system, the canonical 
coordinates Q are subject to constraints: for the dynamics defined by Eq. (52) it is 
desired to constrain the velociites (~-  ~k. To do this, Lagrangian multipliers are 
again introduced 

afdtd3x2e=O-,afdtd3x{2'-  ,%j(O0 }=O. (53) 

The constrained equations of motion for the single electron functions become 

(a¢ [4, ]  = - (Ye [ 

(Yg' [ ~b]-e)A~ = - (A  aft [~b]-As) 0, (54) 

where in the second form d f / d t  was replaced by A f l A t  and both sides of the 
equation were multiplied by A t (if A is the forward finite difference operator, 
Eq. (54) is accurate to first order). 

After rather elaborate manipulations, this approach to ab initio Molecular 
Dynamics leads to a simple interpretation: the potentials, not the wave functions, 
appear to be the natural candidates for a fictive dynamics scheme. Once the 
potentials 05 u have been updated with some integration scheme, the constraint of 
orthogonality leads directly to the first order A ~  [qS] perturbative correction to 
the wave functions. The updated "velocities" (single particle functions) are then 
orthogonal to second order in the perturbation. At the Hartree-Fock solution, any 
first order corrections to the wave functions vanish [10]. 

The dynamics defined by Eq. (52) does not allow for an energy loss: there is no 
quenching process whereby the system becomes trapped in a low energy state. 
A scaling of the "velocities" until the system has "cooled" can be introduced as in 
the Car-Parinello method [2]. As an alternative to velocity scaling, a dissipative 
function can be defined 

g = (55)  

The associated non-conservative force 

F g = - 6 g / 6 ~  = - kukl~kl (56) 
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can be added to the equation of motion for the potentials qS. By controlling the 
values of the dissipation constants k, the rate of energy loss can be regulated. 
Hence, the dynamics consequently becomes a minimization procedure and no 
rescaling of "velocities" is necessary. By applying the fictitious dynamics to the 
potentials and truly constraining the wave functions allows for, in the sense that 
there is no ad hoc orthogonolizations of the wave functions and no discontinuous 
rescaling of velocities, a "smooth" search of the space defined by the energy 
functional E[qS, ~b*, ~b]. The concepts of orbital optimization and wave function 
damping can be expressed directly in terms of the fictive dynamics. 

5 Discussion 

Car and Parinello [-2] write the equation of motion for the electronic wave 
functions as 

#~l i = -- (~/(~]i g -~ 2 £ i j O j  (57) 
J 

with the introduction of the "mass" /~. First, it should be noted that the 
wave functions 0 are playing the role of coordinates as opposed to previous 
section where the wave functions play the role of velocities. Eq. (57) is then 
integrated for one "timestep" and the wave functions obtained are no 
longer orthogonal: some orthogonalization method is then applied to wave func- 
tions [2, 11, 12]. The system is then allowed to cool by gradual rescaling of the 
"velocities" 0. In the approach outlined in the previous section, the potentials 
q~ij are integrated for one "timestep'. The resulting change in the potentials is then 
treated as a perturbation to determine the new single particle wave functions: the 
perturbation correction is the constrained "dynamics" of the one electron wave 
functions. Energy loss can be introduced by velocity scaling or by dissipative 
mechanics. 

The method outlined here is suitable for Hartree-Fock ab initio Molecular 
Dynamics simulations [13] where the density coefficients Vii are known and 
only small corrections to the electron wave functions are necessary due to the 
movement of the nuclei over a single (physical) timestep. However, the method has 
been presented to allow its extension to cases where the electronic wave function is 
represented by a CI expansion. Then, as the nuclei follow a trajectory, the CI 
expansion coefficients are also changing: the method described can be used for 
wave function optimization as the new CI vectors are determined as done with 
MCSCF methods. 
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